# Installation, Operation and Maintenance Manual

**Commercial Reverse Osmosis Systems** 

### Series PWR8024

# **PURE WATER**

**CAUTION:** Please read the entire manual before proceeding with the installation and startup. Your failure to follow any attached instructions or operating parameters may lead to the product's failure, which can cause property damage and/or personal injury.

- Do not use where the water is microbiologically unsafe.
- Pretreatment must be sufficient to eliminate chemicals that would attack the membrane materials.
- Always turn off the unit, shut off the feed water, and disconnect the electrical power when working on the unit.
- Never allow the pump to run dry.
- Never start the pump with the reject valve closed.
- Never allow the unit to freeze or operate with a feed water temperature above 100°F.

#### Save manual for future reference.

Please refer to Section 6 of this manual for operating parameters according to your specific feed water Silt Density Index (SDI). For all other settings according to your specific feed water quality, please contact your Watts representative. A chemical analysis of the feed water should be conducted prior to the initial sizing and selection of this system.

#### Notes

Changes in operating variables are beyond the control of Watts. The end user is responsible for the safe operation of this equipment. The suitability of the product water for any specific application is the responsibility of the end user.

Successful long-term performance of an RO system depends on proper operation and maintenance of the system. This includes the initial system startup and operational startups and shutdowns. Prevention of fouling or scaling of the membranes is not only a matter of system design, but also a matter of proper operation. Record keeping and data normalization are required in order to know the actual system performance and to enable corrective measures when necessary. Complete and accurate records are also required in case of a system performance warranty claim.

Changes in the operating parameters of an RO system can be caused by changes in the feed water or can be a sign of trouble. Maintaining an operation and maintenance log is crucial in diagnosing and preventing system problems. For your reference, a typical log sheet is included in this manual.



Series PWR8024

### Table Of Contents

. . . ..

| Ι.   | Introduction                                             |
|------|----------------------------------------------------------|
|      | A. Specifications                                        |
|      | B. Overview                                              |
|      | C. Pre-treatment                                         |
| II.  | Controls, Indicators, and Components                     |
|      | A. General System Component Identification – Figure #1 3 |
|      | B. Electrical Connection – Figure #2 4                   |
| III. | Operation                                                |
|      | A. Installation                                          |
|      | B. Plumbing Connections 5                                |
|      | C. Electrical Connections                                |
|      | D. Startup                                               |
|      | E. Controllers                                           |
|      | F. Operation and Maintenance Log7                        |
|      | G. Troubleshooting 8-9                                   |
| IV.  | Replacement Parts List 10                                |
| V.   | Membrane Replacement                                     |
| VI.  | Appendix                                                 |
|      | Flow Rate Guidelines                                     |
|      | Temperature Correction Factors                           |

**Note:** Do not use with water that is microbiologically unsafe or of unknown quality without adequate disinfection before or after the system.



# I. Introduction

The separation of dissolved solids and water using RO membranes is a pressure driven temperature dependent process. The membrane material is designed to be as permeable to water as possible while maintaining the ability to reject dissolved solids.

The main system design parameters require the following:

- Internal flows across the membrane surface must be high enough to prevent settling of fine suspended solids on the membrane surface.
- The concentration of each dissolved ionic species must not exceed the limits of solubility anywhere in the system.
- Pre-treatment must be sufficient to eliminate chemicals that would attack the membrane materials.

### A. Specifications

| MODEL NUMBER                                         | PWR80243085 | PWR80243125 | PWR80243165   | PWR80243205 |  |
|------------------------------------------------------|-------------|-------------|---------------|-------------|--|
| Maximum Productivity (gallons per minute)            | 40          | 60          | 80            | 100         |  |
| Quality (typical membrane percent rejection)         |             | 99          | 9%            |             |  |
| Recovery (adjustable)                                |             | 65%         | - 75%         |             |  |
| Membrane Size                                        |             | 8" x        | : 40"         |             |  |
| Membrane Array (four elements per vessel)            | 1:1         | 2:1         | 2:2           | 3:2         |  |
| Prefilter (system ships with five micron cartridges) | 7 roun      | d x 40"     | 7 round x 40" |             |  |
| Feed Water Connection                                | 2" Flange   | 2.5" Flange | 3" Flange     |             |  |
| Product Water Connection                             | 2" FI       | ange        | 2.5" Flange   |             |  |
| Reject Water Connection                              |             | 1.5"        | Flange        |             |  |
| Feed Water Required (GPM at 65% recovery)            | 62          | 93          | 123           | 154         |  |
| Minimum Feed Water Pressure                          | 20 PSIG     | 20 PSIG     | 20 PSIG       | 20 PSIG     |  |
| Drain Required (maximum)                             | 62          | 93          | 123           | 154         |  |
| 460 VAC, 3-phase, 60Hz (other voltages available)    | 25 amps     | 30 amps     | 35 amps       | 40 amps     |  |
| Motor Horse Power (TEFC Motor)                       | 15          | 20          | 25            | 30          |  |
| Dimensions L x W x H (approximate)                   |             | 186" x 2    | 26" x 72"     |             |  |
| Shipping Weight (estimated pounds)                   | 2500        | 2800        | 3200          | 3500        |  |

#### Notes:

- Maximum production based on a feed water of 77° F, SDI < 3, 1000 ppm TDS, and pH 7.6. Individual membrane productivity may vary (± 15%). May be operated on other feed waters with reduced capacity.
- Percent Rejection is based on membrane manufactures specifications; overall system percent rejection may be less.

#### **B. RO Overview**

Reverse osmosis systems utilize semipermeable membrane elements to separate the feed water into two streams. The pressurized feed water is separated into purified (product) water and concentrate (reject) water. The impurities contained in the feed water are carried to drain by the reject water.



#### C. Pretreatment

The RO feed water must be pretreated in order to prevent membrane damage and/or fouling. Proper pretreatment is essential for reliable operation of any RO system.

Pretreatment requirements vary depending on the nature of the feed water. Pretreatment equipment is sold separately. The most common forms of pretreatment are described below.

**Media Filter** - Used to remove large suspended solids (sediment) from the feed water. Backwashing the media removes the trapped particles. Backwash can be initiated by time or differential pressure.

Water Softener - Used to remove calcium and magnesium from the feed water in order to prevent hardness scaling. The potential for hardness scaling is predicted by the Langelier Saturation Index (LSI). The LSI should be zero or negative throughout the unit unless approved anti-scalents are used. Softening is the preferred method of controlling hardness scale.

**Carbon Filter -** Used to remove chlorine and organics from the feed water. Free chlorine will cause rapid irreversible damage to the membranes.

The residual free chlorine present in most municipal water supplies will damage the thin film composite structure of the membranes used in this unit. Carbon filtration or sodium bisulfite injection should be used to completely remove the free chlorine residual.

**Chemical Injection -** Typically used to feed antiscalant, coagulant, or bisulfite into the feed water or to adjust the feed water pH.

**Prefilter Cartridge -** Used to remove smaller suspended solids and trap any particles that may be generated by the other pretreatment. The cartridge(s) should be replaced when the pressure drop across the housing increases 5 - 10 psig over the clean cartridge pressure drop. The effect of suspended solids is measured by the silt density index (SDI) test. An SDI of five (5) or less is specified by most membrane manufacturers and three (3) or less is recommended.

**Iron & Manganese -** Iron should be removed to less than 0.1 ppm. Manganese should be removed to less than 0.05 ppm. Special media filters and/or chemical treatment is commonly used.

**pH** - The pH is often lowered to reduce the scaling potential.

**Silica:** Reported on the analysis as SiO2. Silica forms a coating on membrane surfaces when the concentration exceeds its solubility. Additionally, the solubility is highly pH and temperature dependent. Silica fouling can be prevented with chemical injection and/or reducing the recovery.

### II. Controls, Indicators, and Components (See Figure 1)

#### A. General System Component Identification

- (A) Controller Controls the operation of the system and displays the product water quality.
- (B) Reject Control Valve Controls the amount of reject flow.
- (C) Reject Recycle Control Valve Controls the amount of reject recycle flow.
- (D) Pump Discharge Valve Used to throttle the pump.
- (E) Prefilter Inlet Pressure Gauge Indicates the inlet pressure of the prefilter.
- (F) Pump Suction Pressure Gauge Indicates the prefilter outlet and pump suction pressure. The difference between this gauge and the prefilter inlet gauge is the prefilter differential pressure of the prefilter.
- (G) Pump Discharge Pressure Gauge Indicates the pump discharge pressure.
- H Membrane Feed Pressure Gauge Indicates the membrane feed pressure.
- (1) Reject Pressure Gauge Indicates the reject pressure.
- (J) Reject Flow Meter Indicates the reject flow rate in gallons per minute (gpm).
- (L) Product Flow Meter Indicates the product flow rate in (gpm).
- (M) Prefilter Housing Contains the RO prefilters.
- (N) Automatic Inlet Valve Opens when pump is on and closes when the pump is off.
- (O) RO Feed Pump Pressurizes the RO feed water.
- (P) RO Membrane Vessels Contains the RO membranes.
- (Q) Motor starter / transformer enclosure.



Figure 1

### **B. Electrical Connection**



Figure 2

### **Electrical Connection**

# **III.** Operation

#### A. Installation

- 1. The water supply should be sufficient to provide a minimum of 20 psig pressure at the design feed flow.
- 2. Proper pretreatment must be determined and installed prior to the RO system.
- A fused high voltage disconnect switch located within 10 feet of the unit is recommended. This disconnect is not provided with the RO system.
- 4. Responsibility for meeting local electrical and plumbing codes lies with the owner /operator.
- 5. Install indoors in an area protected from freezing. Space allowances for the removal of the membranes from the pressure vessels should be provided. *This system requires 42*" *minimum clear space on each side.*

### **B.** Plumbing Connections

# Note: It is the responsibility of the end user to ensure that the installation is done according to local codes and regulations.

- 1. Connect the pretreated feed water line to the inlet side of the prefilter housing. (Figure # 1 item # 1) A feed water shutoff valve should be located within 10 feet of the system.
- Temporarily connect the outlet of the product water flow meter to drain. (Figure # 1 item # 2) The product water line should never be restricted. Membrane and/or system damage may occur if the product line is blocked.
- 3. Connect the outlet of the reject water flow meter to a drain. (Figure # 1 item # 3) The reject drain line should never be restricted. Membrane and/or system damage may occur if the reject drain line is blocked. An air gap must be located between the end of the drain line and the drain. The use of a standpipe or other open drain satisfies most state and local codes and allows for visual inspection and sampling.

### C. Electrical

## Note: It is the responsibility of the end user to ensure that the installation is done according to local codes and regulations.

- 1. A safety switch or fused disconnect should be installed within 10 feet of the system. *The disconnect and fuses should be sized accordingly.*
- 2. Verify that the disconnect switch is de-energized using a voltmeter.
- 3. Connect the outlet of the disconnect switch to the top of the motor starter relay. (Figure #1 item Q and Figure #2). Attach the power supply ground to the controller ground.
- 4. Do not apply power to the RO unit at this time.

### D. Startup

- 1. Verify that the pretreatment equipment is installed and working properly. Verify that no free chlorine is present in the feed water.
- 2. Verify that the controller on/off switch is in the off position.
- 3. Close the pump discharge completely then open it one turn. **Note:** All valves on this unit turn clockwise to close.
- 4. Install five micron filter cartridges in the prefilter housing.
- 5. Open the reject control valve completely by turning it counterclockwise.
- 6. Close the reject recycle control valve completely by turning it counterclockwise.
- 7. Open the feed water shutoff valve installed in step III-B-1 above.
- 8. Engage the safety switch or disconnect (installed in step III-C-1 above) to apply electrical power to the RO system.
- 9. Turn the key switch on by rotating it clockwise. Press the power button. There will be a 10 second delay and the pump will start. Press the power button as soon as the pump starts to shut it down and look at the motor fan as the pump stops to determine if the pump rotation is correct. The fan should rotate in the direction indicated by the rotation arrow on the pump. Continue with the startup if the pump is rotating in the proper direction. If the pump rotation is backwards, reverse the rotation by shutting off the power and swapping any two of the three power lines connected in step III.C.3 above. Verify correct pump rotation before continuing with startup.
- 10. Turn the system on and allow the product and reject water to go to drain for 15 minutes.
- 11. Adjust the reject control valve, the reject recycle control valve and the pump discharge valve until the desired flows are achieved. Closing the reject valve increases the recycle and product flow and decreases the reject flow. Closing the reject recycle valve increases the reject and product flow and decreases the recycle flow. Opening the pump discharge valve increases all of the flows. See the temperature correction table in the appendix to determine the flow rates for different operating temperatures.
- 12. Allow the product water to flow to drain for 30 minutes.
- Turn off the system and connect the product line to the point of use. The product water line should never be restricted. Membrane and/or system damage may occur if the product line is blocked.
- 14. Restart the system and record the initial operating data using the log sheet in the next section.
- 15. See the controller section for detailed information about the controller.

Note: It is very important to vent the mechanical seal during startup. Failure to vent the seal may result in premature seal failure.

E. Controllers See Seperate Booklet



| REMARKS                                                |          |  |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|--|--|--|
| PRE FILTER<br>OUTLET                                   | THESSURE |  |  |  |  |  |  |  |  |  |  |  |  |
| PRE FILTER<br>Inlet Pressure                           |          |  |  |  |  |  |  |  |  |  |  |  |  |
| FEED WATER PRE FILTER<br>Chlorine level inlet pressure |          |  |  |  |  |  |  |  |  |  |  |  |  |
| FEED WATER<br>Hardness                                 |          |  |  |  |  |  |  |  |  |  |  |  |  |
| FEED WATER<br>Temp                                     |          |  |  |  |  |  |  |  |  |  |  |  |  |
| PRODUCT TDS<br>PPM                                     |          |  |  |  |  |  |  |  |  |  |  |  |  |
| FEED TDS PPM                                           |          |  |  |  |  |  |  |  |  |  |  |  |  |
| REJECT<br>Pressure                                     |          |  |  |  |  |  |  |  |  |  |  |  |  |
| PUMP<br>DISCHARGE                                      | PHESSURE |  |  |  |  |  |  |  |  |  |  |  |  |
| REJECT GPM                                             |          |  |  |  |  |  |  |  |  |  |  |  |  |
| PRODUCT<br>GPM                                         |          |  |  |  |  |  |  |  |  |  |  |  |  |
| DATE                                                   |          |  |  |  |  |  |  |  |  |  |  |  |  |

F. PWR8024 Operation and Maintenance Log

Note: Change the prefilter when the differential pressure increases by 5 - 10psi over the clean differential pressure. Clean the RO membrane(s) when the product flow drops by 15% or more. (See appendix)

### G. Troubleshooting

### **RO Troubleshooting Guide**

|                                        | SYMPTOMS            |                             |                                |                                              |                                                                                                                                                  |                                                                                                                                                                                                                                                           |
|----------------------------------------|---------------------|-----------------------------|--------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SALT PASSAGE                           | PERMEATE FLOW       | PRESSURE DROP               | LOCATION                       | POSSIBLE CAUSES                              | VERIFICATION                                                                                                                                     | CORRECTIVE ACTION                                                                                                                                                                                                                                         |
| Normal to increased                    | Decreased           | Normal to increased         | Predominantly<br>first stage   | Metal oxide                                  | Analysis of metal ions in<br>cleaning solution.                                                                                                  | Improved pretreatment to remove met-<br>als. Cleaning with acid cleaners.                                                                                                                                                                                 |
| Normal to increased                    | Decreased           | Normal to increased         | Predominantly first stage      | Colloidal fouling                            | SDI measurement of feed/<br>X-ray diffraction analysis of<br>cleaning sol. residue.                                                              | Optimize pretreatment system for<br>colloid removal. Clean with high pH,<br>anionic detergent formulation.                                                                                                                                                |
| Increased                              | Decreased           | Increased                   | Predominantly<br>last stage    | Scaling (CaSO4, CaSO3,<br>BaSO4, SiO2)       | Analysis of metal ions in<br>cleaning sol. Check LSI of<br>reject. Calculate maximum<br>solubility for CaSO4, BaSO4,<br>SiO2 in reject analysis. | Increase acid addition and scale<br>inhibitor for CaSO <sub>3</sub> and CaSO <sub>4</sub> . Reduce<br>recovery. Clean with an acid formula-<br>tion for CaCO <sub>3</sub> , CaSO <sub>4</sub> and BaSO <sub>4</sub> .                                     |
| Normal to moderate increase            | Decreased           | Normal to moderate increase | Can occur in any<br>stage      | Biological fouling                           | Bacteria count in permeate<br>and reject. Slime in pipes<br>and vessels.                                                                         | Shock dosage of sodium bisulfite.<br>Continuous feed of low conc. bisulfite<br>at reduced pH. Peracetic acid steriliza-<br>tion. Clean with alkaline anionic sur-<br>factant. Chlorine dosage upstream with<br>dechlorination. Replace cartridge filters. |
| Decreased or mod-<br>erately increased | Decreased           | Normal                      | All stages                     | Organic fouling                              | Destructive testing, e.g. IR reflection analysis.                                                                                                | Optimization of pretreatment system<br>(e.g. coagulation process.) Resin/<br>activated carbon treatment. Clean with<br>high pH detergent.                                                                                                                 |
| Increased                              | Increased           | Decreased                   | Most severe in the first stage | Chlorine oxidant attack                      | Chlorine analysis of feed.<br>Destructive element test.                                                                                          | Check chlorine feed equipment and dechlorination equipment.                                                                                                                                                                                               |
| Increased                              | Increased           | Decreased                   | Most severe in the first stage | Abrasion of membrane by crystalline material | Microscopic solids analysis<br>of feed. Destructive ele-<br>ment test.                                                                           | Improved pretreatment. Check all filters for media leakage.                                                                                                                                                                                               |
| Increased                              | Normal to increased | Decreased                   | At random                      | O-ring leaks, End or side seal glue leaks.   | Probe test. Vacuum test.<br>Colloidal material passage.                                                                                          | Replace O-rings. Repair or replace elements.                                                                                                                                                                                                              |
| Increased                              | Normal to low       | Decreased                   | All stages                     | Conversion too high.                         | Check flows and pressures against design guidelines                                                                                              | Reduce conversion rate. Calibrate sensors. Increase analysis and data collection.                                                                                                                                                                         |

#### Motor Troubleshooting Chart

| PROBLEM                                  | POSSIBLE CAUSE                                                                           | CORRECTIVE ACTION                                                                             |  |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Motor fails to start                     | Blown fuses                                                                              | Replace fuses with proper type and rating                                                     |  |  |  |
|                                          | Overload trips                                                                           | Check and rest overload in starter.                                                           |  |  |  |
|                                          | Improper power supply                                                                    | Check to see that power supplied agrees with motor nameplate and load factor.                 |  |  |  |
|                                          | Open circuit in winding or control switch                                                | Indicated by humming sound when switch is closed.                                             |  |  |  |
|                                          | Mechanical failure                                                                       | Check to see if motor and drive turn freely. Check bearing and lubrication.                   |  |  |  |
|                                          | Short circuited stator                                                                   | Indicated by blown fuses. Motor must be rewound.                                              |  |  |  |
|                                          | Poor stator coil connection                                                              | Remove end bells, locate with test lamp.                                                      |  |  |  |
|                                          | Rotor defective                                                                          | Look for broken bars or end ring.                                                             |  |  |  |
|                                          | Motor may be overloaded                                                                  | Reduce load.                                                                                  |  |  |  |
| Motor Stalls                             | One phase connection                                                                     | Check lines for open phase.                                                                   |  |  |  |
|                                          | Wrong application                                                                        | Change type or size. Consult manufacturer.                                                    |  |  |  |
|                                          | Overload motor                                                                           | Reduce load.                                                                                  |  |  |  |
|                                          | Low motor voltage                                                                        | See that nameplate voltage is maintained. Check connection.                                   |  |  |  |
|                                          | Open circuit                                                                             | Fuses blown, check overload relay, stator and push buttons.                                   |  |  |  |
| Motor runs and then dies down            | Power failure                                                                            | Check for loose connections to line, to fuses and to control.                                 |  |  |  |
| Motor does not come up to speed          | Not applied properly                                                                     | Consult supplier for proper type.                                                             |  |  |  |
| motor does not come up to speed          | Voltage too low at motor terminals because of line drop.                                 | Use higher voltage on transformer terminals or reduce load. Check connections. Check          |  |  |  |
|                                          |                                                                                          | conductors for proper size.                                                                   |  |  |  |
|                                          | Broken rotor bars or loose rotor.                                                        | Look for cracks near the rings. A new rotor may be required as repairs are usually temporary. |  |  |  |
| Motor takes too long to accelerate       | Open primary circuit                                                                     | Locate fault with testing device and repair.                                                  |  |  |  |
|                                          | Excess loading                                                                           | Reduce load.                                                                                  |  |  |  |
|                                          | Poor circuit                                                                             | Check for high resistance.                                                                    |  |  |  |
|                                          | Defective squirrel cage rotor                                                            | Replace with new rotor.                                                                       |  |  |  |
|                                          | Applied voltage too low                                                                  | Get power company to increase power tap.                                                      |  |  |  |
| Wrong rotation                           | Wrong sequence of phases                                                                 | reverse connections at motor or at switchboard.                                               |  |  |  |
| Motor overheats while running            | Overloaded                                                                               | reduce load.                                                                                  |  |  |  |
| under load                               | Frame or bracket vents may be clogged with dirt and prevent proper ventilation of motor. | Open vent holes and check for a continuous stream of air from the motor.                      |  |  |  |
|                                          | Motor may have one phase open                                                            | Check to make sure that all leads are well connected.                                         |  |  |  |
|                                          | Grounded could                                                                           | Locate and repair.                                                                            |  |  |  |
|                                          | Unbalanced terminal voltage                                                              | Check for faulty leads, connections and transformers.                                         |  |  |  |
| Motor vibrates after correcting          | motor misaligned                                                                         | Realign                                                                                       |  |  |  |
| have been made                           | Weak support                                                                             | Strengthen base.                                                                              |  |  |  |
|                                          | Coupling out of balance                                                                  | Balance coupling.                                                                             |  |  |  |
|                                          | Driven equipment unbalanced                                                              | Rebalance driven equipment.                                                                   |  |  |  |
|                                          | Defective ball bearing                                                                   | Replace bearing.                                                                              |  |  |  |
|                                          | Bearing not in line                                                                      | Line properly.                                                                                |  |  |  |
|                                          | Balancing weights shifted                                                                | Rebalance motor.                                                                              |  |  |  |
|                                          | Polyphase motor running single phase                                                     | Check for open circuit.                                                                       |  |  |  |
|                                          | Excessive end play                                                                       | Adjust bearing or add washer.                                                                 |  |  |  |
| Unbalanced line current on               | Unequal terminal volts                                                                   | Check leads and connections                                                                   |  |  |  |
| polyphase motors during normal operation | Single phase operation                                                                   | Check for open contacts                                                                       |  |  |  |
| Scraping noise                           | Fan rubbing air shield                                                                   | Remove interference.                                                                          |  |  |  |
| ooluping noise                           | Fan striking insulation                                                                  | Clear fan.                                                                                    |  |  |  |
|                                          | loose on bedplate                                                                        | Tighten holding bolts.                                                                        |  |  |  |
| Noisy operation                          | Airgap not uniform                                                                       | Check and correct bracket fits or bearing.                                                    |  |  |  |
|                                          | Rotor unbalance                                                                          | Rebalance.                                                                                    |  |  |  |
| Hot bearings general                     | Bent or sprung shaft                                                                     | Straighten or replace shaft.                                                                  |  |  |  |
|                                          | Excessive belt pull                                                                      | Decrease belt tension.                                                                        |  |  |  |
|                                          | Pulleys too far away                                                                     | Move pulley closer to motor bearing.                                                          |  |  |  |
|                                          | Pulley diameter too small                                                                | Use larger pulleys.                                                                           |  |  |  |
|                                          | Misalignment                                                                             | Correct by realignment of drive.                                                              |  |  |  |
| Hot bearings ball                        | Insufficient grease                                                                      | Maintain proper quantity of grease in bearing.                                                |  |  |  |
| nor boarings bai                         | Deterioration of grease, or lubricant contaminated                                       | Remove old grease, wash bearings thoroughly in kerosene and replace with new grease.          |  |  |  |
|                                          | Excess lubricant                                                                         | Reduce quantity of grease: bearing should not be more than ½ filled.                          |  |  |  |
|                                          | Overloaded bearing                                                                       | Check alignment, side and end thrust.                                                         |  |  |  |
|                                          |                                                                                          |                                                                                               |  |  |  |
|                                          | Broken ball or rough races                                                               | Replace bearing: first clean housing thoroughly.                                              |  |  |  |

These instructions do not cover all details or variations in equipment nor provide for every possible condition to be met in connection with installation, operation or maintenance. Chart courtesy of Marathon Electric.

### **RO System Troubleshooting**

| PROBLEM                                                       | CORRECTIVE ACTION                                                 |
|---------------------------------------------------------------|-------------------------------------------------------------------|
|                                                               | General                                                           |
| High Product Water TDS                                        |                                                                   |
| Membrane expanded.                                            | Replace membrane.                                                 |
| Membrane attack by chlorine                                   | Carbon pre-filter may be exhausted. Replace with a new cartridge. |
| Clogged pre-filter-creates pressure drop and low reject flow. | Replace pre-filter cartridge.                                     |
| Feed pressure too low.                                        | Feed pressure must be at least 20psi.                             |
| Insufficiently flushed post-filter cartridge.                 | Flush post-filter with pure water.                                |
| Brine seal on membrane leaks.                                 | Determine if seal or o-ring is bad. Replace as needed.            |
| No Product Water or Not Enough Product Water                  |                                                                   |
| Feed water shut off.                                          | Turn on feed water.                                               |
| Low feed pressure. Feed pressure must be at least 20psi.      | Consider booster pump.                                            |
| Pre-filter cartridge clogged.                                 | Replace pre-filter cartridge.                                     |
| Membrane fouled.                                              | Determine and correct cause; replace membrane.                    |
| Product check valve stuck.                                    | Replace check valve fitting.                                      |
| Low pump discharge pressure                                   | Open pump discharge valve, replace pump                           |

# **IV. Replacement Parts List**

| ITEM NUMBER | DESCRIPTION                                       |             | QUANTITY F  | PER SYSTEM  |             |
|-------------|---------------------------------------------------|-------------|-------------|-------------|-------------|
|             |                                                   | PWR80243085 | PWR80243125 | PWR80243165 | PWR80243205 |
| 1           | Pre filter housing 7 round 40"                    | 1           | 1           | 1           | 1           |
| 2           | Pressure Gauge, 2 1/2", 0-100 psi, LF, Back Mount | 2           | 2           | 2           | 2           |
| 3           | Pressure Gauge, 2 1/2", 0-400 psi, LF, Back Mount | 3           | 3           | 3           | 3           |
| 4           | Flow Meter 2 - 20 gpm                             | 1           | 1           |             |             |
| 5           | Flow Meter 4 – 40 gpm                             |             |             | 1           | 1           |
| 6           | Flow Meter 6 - 60 gpm                             | 2           | 1           |             |             |
| 7           | Flow Meter 10 - 80 gpm                            |             | 1           | 1           | 1           |
| 8           | Flow Meter 15-130 gpm                             |             |             | 1           | 1           |
| 9           | Controller with conductivity meter (optional)     | 1           | 1           | 1           | 1           |
| 10          | Pump & Motor, 3-Phase, 60Hz, 15 hp                | 1           |             |             |             |
| 11          | Pump & Motor, 3-Phase, 60Hz, 20 hp                |             | 1           |             |             |
| 12          | Pump & Motor, 3-Phase, 60Hz, 25 hp                |             |             | 1           |             |
| 13          | Pump & Motor, 3-Phase, 60Hz, 30 hp                |             |             |             | 1           |
| 14          | Low Pressure Switch                               | 1           | 1           | 1           | 1           |
| 15          | Inlet Solenoid Valve 24 volt, 2"                  | 1           |             |             |             |
| 16          | Inlet Solenoid Valve 24 volt, 3"                  |             | 1           | 1           | 1           |
| 17          | RO Membranes                                      | 8           | 12          | 16          | 20          |
| 18          | Pre Filter Cartridges 40" 5 micron                | 7           | 7           | 7           | 7           |

### V. Membrane Replacement

- 1. Turn off the system and close the feed water shutoff valve.
- 2. Disconnect the membrane feed hoses by loosing the brass fittings between the end of the hoses and the pressure vessel end caps.
- 3. Remove the retaining rings from the pressure vessels.
- 4. Push the old membrane out of the vessel in the direction of the feed flow.
- 5. Record the serial numbers of the new membranes.
- 6. Lightly lubricate the brine seals on the new membranes with clean water.
- 7. Install the new membranes in the direction of flow with the brine seal end going in last.

#### Note: Be sure to install an interconnector between the membranes in each pressure vessel.

- 8. Lightly lubricate the end cap internal and external o-rings with glycerin.
- 9. Install the end caps and secure them with the retaining rings.
- 10. Install the membrane feed hoses.
- 11. Verify that all retaining rings are installed.
- 12. Follow the start up procedure in section III-D.



### Temperature Correction Factors

| °C | °F   | CORRECTION FACTOR |
|----|------|-------------------|
| 30 | 86   | 1.16              |
| 29 | 84.2 | 1.13              |
| 28 | 82.4 | 1.09              |
| 27 | 80.6 | 1.06              |
| 26 | 78.8 | 1.03              |
| 25 | 77   | 1.00              |
| 24 | 75.2 | 0.97              |
| 23 | 73.4 | 0.94              |
| 22 | 71.6 | 0.92              |
| 21 | 69.8 | 0.89              |
| 20 | 68   | 0.86              |
| 19 | 66.2 | 0.84              |
| 18 | 64.4 | 0.81              |
| 17 | 62.6 | 0.79              |
| 16 | 60.8 | 0.77              |
| 15 | 59   | 0.74              |
| 14 | 57.2 | 0.72              |
| 13 | 55.4 | 0.70              |
| 12 | 53.6 | 0.68              |
| 11 | 51.8 | 0.66              |
| 10 | 50   | 0.64              |
| 9  | 48.2 | 0.62              |
| 8  | 46.4 | 0.61              |
| 7  | 44.6 | 0.59              |
| 6  | 42.8 | 0.57              |
| 5  | 41   | 0.55              |

Multiply the nominal product flow at  $25^{\circ}$  C by the temperature correction factor to determine the flow at various other temperatures.

### **VI.** Appendix

The following tables are intended as a guide to determining the flow rates for the PWR8024 series RO systems. All flows are in gallons per minute (GPM).

#### Nominal flows for systems with reject recycle and a feed water Silt Density Index less than 3.

| MODEL NUMBER  | PWR80243085 | PWR80243125 | PWR80243165 | PWR80243205 |
|---------------|-------------|-------------|-------------|-------------|
| Product (max) | 40          | 60          | 80          | 100         |
| Reject        | 25          | 35          | 45          | 55          |

Nominal flows for systems with reject recycle and a feed water Silt Density Index less than 3.

| MODEL NUMBER   | PWR80243085 | PWR80243125 | PWR80243165 | PWR80243205 |
|----------------|-------------|-------------|-------------|-------------|
| Product (max)  | 40          | 60          | 80          | 100         |
| Reject         | 14          | 20          | 27          | 34          |
| Reject Recycle | 11          | 15          | 18          | 21          |

Nominal flows for systems not using reject recycle and a feed water Silt Density Index of 3 to less than 5.

| MODEL NUMBER  | PWR80243085 | PWR80243125 | PWR80243165 | PWR80243205 |
|---------------|-------------|-------------|-------------|-------------|
| Product (max) | 34          | 51          | 68          | 85          |
| Reject        | 19          | 28          | 37          | 46          |

Nominal flows for systems with reject recycle and a feed water Silt Density Index of 3 to less than 5.

| MODEL NUMBER   | PWR80243085 | PWR80243125 | PWR80243165 | PWR80243205 |
|----------------|-------------|-------------|-------------|-------------|
| Product (max)  | 34          | 51          | 68          | 85          |
| Reject         | 12          | 17          | 23          | 29          |
| Reject Recycle | 7           | 11          | 14          | 17          |

#### **CALIFORNIA PROPOSITION 65 WARNING**

**WARNING:** This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. (California law requires this warning to be given to customers in the State of California.)

For more information: www.watts.com/prop65

USA: North Andover, MA • Tel. (800) 224-1299 • www.watts.com Canada: Burlington, ON • Tel. (888) 208-8927 • www.wattscanada.ca

LIMITED WARRANTY: Certain Watts Pure Water products come with a limited warranty from Watts Regulator Co. Other products may have no warranty or are covered by the original manufacturer's warranty only. For specific product warranty information, please visit www.watts.com or the published literature that comes with your product. Any remedies stated in such warranties are exclusive and are the only remedies for breach of warranty. EXCEPT FOR THE APPLICABLE PRODUCT WARRANTY, IF ANY, WATTS MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED. TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, WATTS HEREBY SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND IN NO EVENT SHALL WATTS BE LIABLE, IN CONTRACT, TORT, STRICT LIABILITY OR UNDER ANY OTHER LEGAL THEORY, FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR PROPERTY DAMAGE, REGARDLESS OF WHETHER IT WAS INFORMED ABOUT THE POSSIBILITY OF SUCH DAMAGES.



A Watts Water Technologies Company